How to write a great research paper

Transcript of a talk (https://research.microsoft.com/en-us/um/people/simonpj/papers/
giving-a-talk/writing-a-paper-slides.pdf) by Simon Peyton-Jones.

Why bother?

Fallacy: we write papers and give talks mainly to impress other, gain recognition, and get promoted

Papers communicate ideas

e your goal: to infect the mind of your reader with your idea; like a virus
o papers are far more durable than programs (think Mozart).

The greatest ideas are literally worthless if you keep them to yourself.

Writing papers

Model I:

o + Ammmmmm—m R e +
| Idea |-->| Do research |-->| Write paper |
o + Amm I R +
Model II:

o I S +
| Idea |-->| Write paper |-->| Do research |
o I + Ammmmmm—m— +

o forces us to be clear, focussed.
e crystallises what we don’t understand.
e opens the way to dialogue with others: reality check, critique, and collaboration.

Do not be intimidated

Fallacy: You need to have a fantastic idea before you can write a paper or give a talk. (Everyone else
seems to.)

Write a paper, and give a talk about any idea, no matter how weedy and insignificant it may seem to you.

e Writing the paper is how you develop the idea in the first place.
e It usually turns out to be more interesting and challenging than it seems at first.

https://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/writing-a-paper-slides.pdf
https://research.microsoft.com/en-us/um/people/simonpj/papers/giving-a-talk/writing-a-paper-slides.pdf

The purpose of your paper

... is to convey your idea.
... from your head to your reader’s head
Everything else serves this goal.

... is not to describe the WizWoz system

e Your reader does not have a WizWoz
e She is primarily interested in re-usable brain-stuff, not executable artefacts.

Conveying the idea

e Here is a problem

e It’s an interesting problem

e It’s an unsolved problem

e Here is an idea

o My idea works (details, data)

e Here’s how my idea compares to other people’s approaches.

Structure

o Abstract (4 sentences)

o Introduction (1 page)

o The problem (1 page)

o My idea (2 pages)

o The details (5 pages)

o Related work (1-2 pages)

o Conclusions and further work (0.5 pages)

The abstract

o [usually write the abstract first
e Used by the program committee members to decide which papers to read
o Four sentences [Kent Beck]

1. State the problem

2. Say why it’s an interesting problem
3. Say what your solution achieves

4. Say what follows from your solution

Example

e Many papers are badly written and hard to understand

e This is a pity, because their good ideas may go underappreciated.

e Following simple guidelines can dramatically improve the quality of your papers

e Your work will be used more, and the feedback you get from others in turn will improve your research

Introduction

1. Describe the problem
2. State your contributions

.. and that is all.

1 Introduction

There are two basic ways to implement function application in
a higher-order language, when the function is unknown: the example to
push/enter model or the eval/upply model [11]. To illustrate the

Use an

difference, consider the higher-order function zipWith, which zips introduce
together two lists, using a function k to combine corresponding list the problem
elements:

zipWith :: (a->b->c) -> [a] -> [b] -> [c]

zipWith k [] 0 = [

zipWith k (x:xs) (y:ys) = k x y : zipWith xs ys

Here k is an unknown function, passed as an argument; global flow
analysis aside, the compiler does not know what function k is bound
0. How should the compiler deal with the call k x y in the body
of zipWith? 1t can’t blithely apply k to two arguments, because
k might in reality take just one argument and compute for a while
before returning a function that consumes the next argument; or k
might take three arguments, so that the result of the zipWith is a
list of functions.

State your contributions
e Write the list of contributions first

- The list of contributions drives the entire paper: the paper substantiates the claims you have made
- Reader thinks “gosh, if they can really deliver this, that’d be exciting; I'd better read on”

Which of the two is best in practice? The trouble is that the eval-

vation model has a pervasive effect on the implementation, so it is BU“@ted IlSt 010
too much work to implement both and pick the best. Historically, . .
compilers for strict languages (using call-by-value) have tended to Contr‘quhOﬂs

use eval/apply, while those for lazy languages (using call-by-need)
have often used push/enter, but this is 90% historical accident —ei-
ther approach will work in both settings. In practice, implementors
choose cne of the two approaches based on a qualitarive assessment
of the trade-offs. In this paper we put the choice on a firmer basis:

e We explain precisely what the two models are, in a common
notational framework (Section 4). Surprisingly, this has not
been done betfore.

¢ The choice of evaluarion model affects many other design
choices in subtle but pervasive ways. We identify and dis-
cuss these effects in Sections 5 and 6, and contrast them in Do not leave the reader to
Section 7. There are lots of nitty-gritty details here, for which h ‘buti
we make no apology — they were far from obvious to us, and guess what your contributions
articulating these details is one of our main contributions. arel

In terms of its impact on compiler and run-time system com-
plexity, eval/apply seems decisively superior, principally be-
cause push/enter requires a stack like no other: stack-walking

Contributions should be refutable

We describe the WizWoz system. It is totally We give the syntax and semantics of a language that

cool supports concurrent processes (section 3). Its
innovative features are ...

We study its properties We prove that the type system is sound, and the type
checking is decidable (section 4)

We have used WizWoz in practice We have built a GUI toolkit in WizWoz, and used it

to implement a text editor (section 5). The result is
half the length of the Java version

No “rest of the paper is”...

e Not: “The rest of the paper is structured as follows. Section 2 introduces the problem. Section 3 ..
Finally, Section 8 concludes”.

« Instead, *use forward references from the narrative in the introduction”. The introduction (including
the contributions) should survey the whole paper, and therefore forward reference every important
part.

No related work yet

Your reader Your dea

We adopt the notion of transaction from Brown [l], as modified for distributed
systems by White [2], using the four-phase interpolation algorithm of Green [3].
Our work differs from White in our advanced revocation protocol, which deals with
the case of priority inversion das described by Yellow [4].

Problem 1: describing alternative approaches gets between the reader and your idea. “I feel tired”

Problem 2: the reader knows nothing about the problem yet; so your (carefully trimmed) description of
various technical tradeoffs is absolutely incomprehensible. “I feel stupid”

Instead

Concentrate single-mindedly on a narrative that

e Describes the problem, and why it is interesting
e Describes your idea
e Defends your idea, showing how it solves the problem, and filling out the details

On the way, cite relevant work in passing, but defer discussion to the end.

The Payload of your paper

Consider a bufircuated semi-lattice D, over a hyper-modulated signature
S. Suppose pi is an element of D. Then we Know for every such p,
there is an epi-modulus j such that p. <p,

e Sounds impressive... but
e Sends readers to sleep
e In a paper you MUST provide the details, but FIRST convey the idea.

Introduce the problem, and your idea, using EXAMPLES and only the present the general
case

2 Background

To set the scene for this paper, we begin with a brief overview of

the Scrup your boilerplure approach to generic programming. Sup-

pose that we want to write a function that computes the size of an

arbitrary data structure. The basic algorithm is “for each node, add

the sizes of the children, and add 1 for the node itself”. Here is the Exqmph?

entire code for gsize: '
gsize :: Data a => a -> Int P'th away
gsize t = 1 + sum (gmap(Q gsize t)

The type for gsize says that it works over any type a, provided a

is a data type — that is, that it is an instance of the class Data

The definition of gsize refers to the operation gmapQ, which is a

method of the Data class:

class Typeable a => Data a where

Conveying the idea

e Explain as if you were speaking to someone using a whiteboard

e Conveying the intuition is primary, not secondary

e Once your reader has the intuition, she can follow the details (but not vice versa)
e Even if she skips the details, she still takes away something valuable

Evidence
e Your introduction makes claims
e The body of the paper provides evidence to support each claim

e Check each claim in the introduction, identify the evidence, and forward-reference it from the claim
o Evidence can be: analysis and comparison, theorems, measurements, case studies

Related Work

Fallacy: To make my work look good, i have to make other people’s work look bad.

The Truth: credit is not like money

Giving credit to others does not diminish the credit you get from your paper

e Warmly acknowledge people who have helped you

o Be generous to the competition. “In his inspriring paper [Foo98] Foogle shows... we develop his
foundation in the following ways...”

o Acknowledge weaknesses in your approach

Failing to give credit can kill your paper

If you imply that the idea is yours, and the refree knows it is not, then either

o You don’t know that it’s an old idea (bad).
e You do know, but are pretending it’s your (very bad).

Making sure related work is accurate

e A good plan: when you think you are done, send the draft to the competition saying “could you help
me ensure that I describe your work accurately?”

e Often they will respond with helpful critique

e They are likey to be your referees anyway, so getting their comments up front is jolly good.

The process

o Start early, very early

a. Hastily-written papers get rejected
b. Papers are like wine: they need time to mature

e Collaborate
e Use CVS to support collaboration

Getting help

Get your paper read by as many friendly guinea pigs as possible
e Experts are good
o Non-experts are also very good

e Fach reader can only read your paper for the first time once! So use them carefully.
o Explain carefully what you want (“I got lost here” is much more important than “wibble is mis-spelt”)

Listening to your reviewers

Every review is gold dust. Be (truly) grateful for criticism as well as praise

e This is really, really, really hard

e But it’s really, really, really, really, really, really important

e Read every criticism as a positive suggestion for something you could explian more clearly

e« DO NOT respond “you stupid person, you mean X”. Fix the paper so that X is apparent even to the
stupidest reader.

e Thank them warmly. They have given up their time for you.

Language and Style

Basic stuff

e Submit by deadline
o Keep to the length restrictions

— Do not narrow the margins
— Do not use 6pt font

- On occassion, supply supporting evidence (eg: experimental data, or a written-out
proof) in an appendix.

o Always use a spell checker

Visual structure

e Give strong visual structure to your paper using

— sections and sub-sections
— bullets
— italics

- laid-out code

e Find out how to draw pictures and use them

I I
Info pointer
[

Payload

Info table
> @——» Entry code

Object type
Layout info

Type-specific
fields

TFigure 3. A heap object

The thice cases above do not exhaust the possible founs of f. Tt
might also be a TH UNK, but we have alieady dealt with that case
(tule THUNK). 1t might be a CON, in which case there cannot be any
pending atguments on the stack, and rules UPDATE ot RET apply.

4.3 The eval/apply model

The last block of Figure 2 shows how the eval/apply model deals
with function application. The fitst three tules all deal with the case
of a FUN applied to some arguments:

o 1f there awe caactly the nght number of arguments, we behave
exactly like rule KNOWNCALL, by tail<alling the function.
Rule EXACT s stil | necessary — and indeed has a ditect coun-
terpait in the implementation — because the function might
not be statically known,

e QL

Use the active voice

remainder of the object is called the puyload, and may consist of
a mixture of pointers and non-peinters. For example, the object
CON(C ay ...up) would be reptesented by an object whose info
pointet tepiesented the constructor C and whose payload is the at-
guments | . .. dy.

The infotable contains:

o Exccutable code for the object. For example, a FUN object
has code for the function body.

e An objoct-type ficld, which distinguishes the vatious kinds of
objects (FUN, PAP, CON cic) from cach other.

e Layout information for garbage collection puiposes, which
describes the size and layout of the payload. By “layout”™ we
mean which fields contain pointers and which contain non-
peointets. information that isessential foraccutate garbage col-
lection.

® Typc-specific information, which varies depending on the ob-
ject type. For example, a FU/N object contains its anty, a
CON object contains its consiructor tag, a small integer that
distinguishes the different consttuctors of a data type; and so
on.

1n the case of a PAP, the size of the object is not fixed by 1ts info
table; instead, its size 1s stored in the object itself. The layout of its
fields (e.g. which are pownters) 15 descnibed by the (imtial segment
of) an argument-descnptor field in the info table of the FUN object
which is always the first ficld of a PAP. The othet kinds of heap
object all have a sizc that is statically fixed by their info table.

A very common opetation is to jump to the entry code for the object,
so GHC uses a slightly-optimised version of the representation in

The passive voice is “respective” but it DEADENS your paper. Avoid it all costs.

e ~L v

S LS.

“We" = you
and the
reader

NO YES
It can be seen that... We can see that...
34 tests were run We ran 34 tests
These properties were thought We wanted to retain these
desirable properties “We" = the
It might be thought that this would You might think this would be a authars
be a type error type error

“You" = the
reader

Use simple, direct language

NO YES
The object under study was displaced The ball moved sideways
horizontally
On an annual basis Yearly
Endeavour to ascertain Find out
It could be considered that the speed of The garbage collector was really slow
storage reclamation left something to be
desired
Summary

If you remember nothing else:

o Identify your key idea
o Make your contributions explicit
e Use examples

A good starting point: “Advice on research and writing” -http://www.cs.cnu.edu/~mleone/how-to.html

10

http://www.cs.cmu.edu/~mleone/how-to.html

	Why bother?
	Papers communicate ideas
	Writing papers
	Do not be intimidated
	The purpose of your paper
	Conveying the idea
	Structure
	The abstract
	Example

	Introduction
	State your contributions
	Contributions should be refutable
	No ``rest of the paper is''…
	No related work yet
	Instead

	The Payload of your paper
	Conveying the idea
	Evidence

	Related Work
	The Truth: credit is not like money
	Making sure related work is accurate
	The process
	Getting help
	Listening to your reviewers

	Language and Style
	Basic stuff
	Visual structure
	Use the active voice
	Use simple, direct language

	Summary

